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HEAT TRANSFER IN ENCLOSURES WITH PROGRAMMED 

HEAT RELEASE 

V. K. Aver'yanov and S. I. Bykov UDC 536.21 

The problems of calculating the indoor air temperature, heat consumption, and room temperatures with 
arbitrary thermal perturbations are examined. 

tn estimating the efficiency of programmed heat release and optimizing it, it is necessary to calculate the thermal 
conditions indoors taking into account nonstationary heat-transfer processes. Including a large number of nonstationary 
thermal perturbations permits improving the temperature-humidity conditions indoors and decreasing the amount of heat 
used [ 110 

The difficulty of introducing thermal conditions operationally with the help of automated control systems increases 
considerably in the setup being examined. This is related to the fact that the known solutions [2, 3], obtained for harmonic, 

jumplike changes in q(r), to(r) and other actions, are either not accurate enough or greatly complicate the operational esti- 

mate of parameters, since in order to use the solutions, it is necessary to expand the heat use function q(r), external tempera- 

ture to(r), and other functions in a Fourier series in each subsequent calculation. In this connection, it is useful to examine 

the solution of the problem of heat transfer indoors using splines [4, 5], which give a simpler algorithm for operational 
control of the temperature conditions. 

The system of equations that describes heat transfer indoors can be represented in the following form: for the heat 
balance indoors in accordance with [1] 

~c;,  dl~ (~) _ ~o/~o (h (~)- to (~)) - -  C~ (~) (t~ (~) - -  to (~)) + q (~) - -  ~ Foj %~ (~ (-c) - -  l o j  (~)) - -  2~ F~,% (l~ (~) - -  ~ j  (~)), 
d'r i i 

for heat transfer in the external walls [2, 6] 

OTo~ (z, T) O2To~ (x, ~) (2) 
=aoj  , 0 < X < l o ; ,  

Or Ox 2 

- ; ~ o j  aroS (o, ~) (~ - r o j  (0, 
Ox - %J (~) z)), (3) 

~Toj (loj, z) 
;.oJ - % ~ j  (to ('O - -  r o J ( l o i ,  ~)), 

Ox 

Toj (x, O) = Toj (x). 

An analogous system of equations is valid for the interior walls: 

(4) 

(5) 

07] j ( x ,  T) - - a j j  O2Ti~(x' ~) 0 < x <  L,j (6) 
&c Ox 2 ' 2 ' 

OTis , T 

~:t ~ Ox = ~zi'~ ( t i  ('~) - -  Ti  J , "c, , , (7) 
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OT~ j (0, r 0, (8)  
Ox 

Ti .i (x, 0) = Tij (x). (9) 

In formulating the problem, we use the assumptions commonly adopted in engineering calculations: the air tempera- 
ture at each moment  in time is constant over the entire volume of the enclosure [1, 7]; the surface of any wall at any time 
is isothermal [7]; the humidity conditions in the enclosures do not change with time [7]; the inner and outer walls are 
reduced to equivalent single-layer walls [8]; the coefficient of heat transfer in the temperature range examined is assumed 
to be constant [1, 9]. 

The simultaneous analytic solution of Eqs. (1)-(9) in order to determine to(r) as a function of q(r), to(r), Cin(r) is 

a very complex problem, which is usually solved under certain assumptions. Thus, in [ 10], this problem was solved with 

Cin(r) = const and q(r), ti(r) varying harmonically. The operational methods used in [2, 9] permit obtaining a solution 

with Cin(r) = const and arbitrary variation of q(r), ti(r). 

As a rule, the problem is considered for a single inner and outer walls; the addition of one more or several barriers 
greatly complicates the problem. Many researchers use grid method [7] for solving this type of system of equations, but 
these require large expenditures of  machine time. 

In our work, the system of equations being examined (1)-(9) was solved using splines [4, 5]. The use of  splines 
for solving thermophysical problems was first brought to our attention by V. N. Bogoslovskii. Here the heat-conduction 

equations are solved only once independent of ti(r) and to(r). Then, the use of recurrence relations permits finding to(r) 

for known ti(r), q(r), Cin(r); in addition, new data on these quantities do not complicate the calculations. 

In exactly the same way q(r) is determined for a given function to(r). 

It is known [6] that the solution of Eqs. (6)-(9) for definite functions ti(r), to(r) has the form 

l i )  

sin zi.~ix Tij (~) (cos ZikJ~ @ (ZioJ )~ilZi ~j Ti j (x ,  T) = cos  z i , i x  @ ~ i o j  ~'i JZi RJ 

= 0 

• exp (--- ai jz]k j v) -~- 2 2 
/~l.J (Zi ~(] ~'i.i - -  a i o  JO~iwi) 

COS Zik j l i j i tf (0) exp ( - -  aiJz~M (T -- 0)) dO + 
0 

i /l/ ' - ) (  ) 
O~iw j (}~,~j Z~kj _4_ ft..2,]) 

~_ ~Zioj aiJ li(O)exp(__aijz~kj(T_O))d 0 �9 aioJ , io/ 
Jzi ,i ( 1 O) 

o 

where Zik j are the positive roots of the equation 

tg zli j ~.i i ((7"io J ' " 7 aiwj) ' 

Z Z2)~j ~to i ~ i w  ] 

| ~/21oi 

[ ~zo (1 + %J ~ ~_ ~ ' ] - ' [  ff To,(OcOSZoR,~d~exp(_ az~ - -  a �9 2 "0 Toj (x, x) = (cos z odx) - - 2  2;Lojz or i 2Xoj ] 
k=l  0 

(11) 

m ~Zojao/ 
}~ oj 

0 

(12) 

Here Zok j are the positive roots of  the equation 

tg ( ~  lojz) -- ~.ojZ Czd (13) 

The functions to(r) and ti(r) can be approximated with a sufficient degree of accuracy by first-order splines. As is 

well known [4], in this case, the splines representing to(r) and ti(r) can be obtained in terms of the B splines as follows: 
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tz 

/z 

(14) 

(15) 

where B 1 (r) are first-order splines relative to the nodes 0, h, 2h; h is the discretization interval and 0 ~< r ~< nh. 

It is not difficult to see that to(ih) = toi, i = 0, 1, ..., n; ti(ih ) = tii , i = 0, 1, ..., n. 

When splines of  order m = 1 (m > 2) are used, Eqs. (14) and (15) assume the form 

(16) 

w h e r e  B m _ t,i(r) is the B spline of  degree (m - 1) relative to the nodes [41 ih, (i + l)h . . . . .  (i + m + 1)h. 

In order to determine the coefficients ci, it is necessary to solve a system of linear equations which is inconvenient 
when n increases. 

Considering the fact that the quantity ti(r ) is measured with some error, it is useful to smooth the splines. However, 

their construction using the technique described in [4] is not  a simple problem. In order to perform the smoothing, it is 

convenient to use the method of  local approximation of  functions by splines [5]. In this case, the coefficients c i 

calculated quite simply, for example, we can set c i - tii; in this case, the accuracy of the approximation of the function 
h 2 

ti(r ) using Eq. (16) will be of  order 6 t'i ( ~ ) + O ( M )  [51. 

1 4 t 1 A more accurate approximation can be obtained by, for example, setting ci ~ , ( ~ - 1 )  -~- T it - -  T ~i(i+l) 
6 

[5]. The sptine constructed in this manner is especially convenient when information on ti(r) and to(r) contains noise. 

It is clear that tiwJ('c)~ 71 j(0, z), t o j ( : ) =  To., ( ~ ,  "~) and tiwj(r)can be represented in the form of three terms: 

the first will arise from the effect of  initial conditions, the second arises from the effect of the outdoor temperature, and 
the third arises from the indoor temperature. In a similar manner tow j (r) is represented as a sum of two terms: the first 

arises from the initial conditions and the second from the indoor temperature. 

We shall denote these terms of  to(r) = ti(r) = B ( r )  as follows: 

t0wj('0 = A(rwj('~) 4- AZ~ (17) 

Using the principle of superposition, it is not  difficult to find that tiwj(r) for to(r) and ti(r), represented by Eqs. 
(14) and (15): 

Similarly, 

rt n 

/ ~  (T)= At.~. ('Q + h ~  ~ &Piwj ('~ - -  (i - -  1) h) + h ~  tejAt~j('~ --- (i - -  l) h). 
~=1 i==l 

io"~(~) = Ato%(~ ) + h ~ r - -  (i - -  1) h). 

(18) 

(19) 

Analysis of  solutions (18) and (19) leads to the conclusion that in order to obtain them, the system of equations 
0 " iy (2)-(9) must be solved only once in order to obtain the functions /',t. t y . ( r ) ,  A t iwj ( r ) ,  ~t~wj(r) , Atowj(r) ,  At ~ tit). Increasing 

IWJ ~w j  

the amount of  starting data (i.e., the number n) does not make it necessary to perform the calculations using Eqs. ( i0)  and 
(12) again. 

n n . For convenience in performing the calculations, we shall obtain the recurrence equations for tiwj(r), towj(r). 
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T A B L E  1. Thermophysical Parameters 

Quantity Value " Quantity Value 

Fo~ 1112 
ho, W/m2~ 

a i l ,  m2/sec 

ai2, m2/sec 

a o1' m'2/see 

a 02' m2]sec 

F i l ,  m 2 
2 

Fi2, m 
2 

Fol ~ nl. 
FO2, m 2 

3 V, m 

c, kJ [m3" deg 

%. Wtm2"~eg 

4,0 

2,32 

1,67.10 -6 

, 2,5.10-G 

1,67.10 -6 

0,28.10 -6 

20 

10 

40 

l.O 

100 

1,045 
9,86 

ao2, W/m2'deg 

C~iO1, W/m2"deg 

CZio 2 , W/m2'deg 

ai01, W/m2"dog 

ffi02' W/m2"deg 
7 i l '  W/m.deg 

~i2' W/m.deg 
o1' W]m.deg 

2~o2, W]m.deg 

Ill '  m 

/i2' m 

/O1, m 

/02'  m 

9,86 

9,86 

9,86 

29,0 

29.0 

2,32 

1,16 

2,32 

3,48 

0,4 
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0,15 
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Fig. 1. Comparison of computational results: 
the curves follow the proposed method; the 
points follow the procedure in [2]. q, kJ; 
t i, ~ 

o I I 

- - - -  p i /50' 

%1 i i 

5ooo L ' / 

IO00 0 8 f6 24 32 40 4,8 "~ 

Fig. 2. The indoor temperature conditions with pro- 
grammed heat release. Cin, kJ/h.deg; q, kJ/h. 
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Using the difference relation 

we obtain from Eq. (1) 

_ _  i y  t l j  (~) _ ~l.~ (~) + hti~ %oj (~) + % ~ z ~ ~  (~) 
w f ' 

l,~+jow, (~)= towj(~)+ %(.+,~A offwj(~- ~I,): 

i y  0 

to~(~) = Atowj(-c) + htolat;wj('O. 

dto(nh) to((n @ 1)h) -lo(nh ) 
d~ h 

(20) 

(21) 

(22) 

(23) 

+ v �9 

i 

tol,,+~t =ton 1 - -  Vd-  Foko--Ci~(nh) ', "%~ 
i 

h t~. ] 
,--~- ~ (~h) + (<o%+ %(,~/0) ~ �9 ,, �9 (nh) ~ ro;%;t~;wi(n/O 

, i i 

(24) 

Eq. (24) permits calculating lo,, to~ . . . . .  ton; r ti.s, . . �9 , tin using the  values of the indoor and outdoor tempera- 

tures Cin(ih), q(ih), i = 1, 2 . . . . .  n and the known values of  to(n+1). 

Thus, expressions (20)-(24) define an algorithm with whose help it is possible to calculate to(r) for any n for known 

q(r), ti(r), Cin(r). Equations (20)-(24) can also be used to calculate the required amount of  heat q(r) for a programmed 

change in the indoor temperature. 

Using the equations indicated above, we wrote a FORTRAN-IV program for the ES-1022 computer. 

In order to check the adequacy of the working equations obtained, we examined the temperature regime in an en- 
closure consisting of  two equivalent exterior and interior walls. The values of the thermophysical parameters used in the 
calculations are presented in Table 1. 

The oscillations in the outdoor air temperature were taken as ti(r) = ( - 2 )  + 10 cos (0.261 r), and the infiltration 

factor was taken as a constant Cin = 0.048 kJ/deg'sec; the indoor air temperature was t o = 18~ A comparison with the 

well-known computational procedure in [3] showed (Fig. 1) that the computational error does not exceed 5%. 

In order to estimate the efficiency of  the method proposed, we calculated the indoor air temperature as a function 
of the varying quantities Cin, ti, q with the same thermophysical parameters (Fig. 2). The numerical experiments showed 

that with an operational definition of  the parameters with an interval of  0.2 h, in the case of the solution obtained by 
operational methods [2], the expenditures of machine time constitute more than 3 h per day. The use of the method 
examined here decreased the machine time used to 10-15 rain. 

Thus, with the help of  this method, it is possible to calculate heat transfer in buildings with arbitrary variation in 
the outside air and other perturbations and controlling parameters. 

NOTATION 

to(r) , interior air temperature averaged over the volume of the enclosure; ti(r), outside air temperature; t iwj (0, 

temperature of  the internal surface of the j-th external wall; towj(r), temperature of  the surface of  the j-th internal wail; 

Cin(r) , infiltration factor (Cin = VnCp); q( r ) ,  amount of  heat, introduced into the enclosure; V, volume of the enclosure; 

Cp, heat capacity of  air; F w, area of the windows; kw, coefficient of  heat transfer through the windows; Foj, Fij, areas of  

the j-th inner and outer walls, respectively; C~oj, C~io r C~iw j, coefficients of  heat transfer of  the j-th inner and outer walls; 

loj' lij' thicknesses of the j-th inner and outer walls; Xoj , kij , coefficients of  thermal conductivity of  the j-th inner and outer 

walls; aoj, aij, coefficients of  thermal diffusivity of  the j-th inner and outer walls; n, multiplicity of the air exchange; Toj(X), 

Tii(x), initial temperature distributions over the thickness in the j-th inner and outer wails. 
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TEMPERATURE DEPENDENCE OF THE VELOCITY OF 

ULTRASOUND AND ELECTRICAL CONDUCTIVITY OF 

AN EPOXY COMPOSITE WITH A CARBON FILLER 

I. N. Ermolenko, V. I. Krylovich, V. I. Alekseenko, 
V. I. Dubkova, P. N. Logvinovich, and I. P. Lyubliner UDC 678.01:621.317.332+534.22-8 

Experimental data are given on the behavior of the velocity of ultrasound and electrical conductivity as a 
function of the temperature in an epoxy composite material filled with carbon fiber. 

Objective prerequisites have now been established for adaptation to the general industrial application of composite 
materials [ 1 ]. This fact necessitates comprehensive investigation of the properties of new materials to test their compliance 
with the set of requirements imposed on structural materials in various branches of engineering, the variations of the 
properties in service, aging, etc. The complexity of these systems makes it rather difficult to employ conventional research 
techniques such as, for example, chemical and spectroscopic procedures. In recent years, therefore, acoustical and electro- 
physical methods have begun to enjoy widespread application [2, 3], and multiparameter methods are being developed for 
the comprehensive investigation of composites with simultaneous measurement of their various properties. 

We have studied the temperature dependence of the electrical conductivity and velocity of propagation of ultrasound 
in an epoxy composite material without filler and with a filler of powdered quartz and metal-infused carbon fiber (the 
lengths of the fiber segments were up to 1 mm). In the conventional classification scheme the investigated composites are 
statistical mixtures. 

The electrical conductivity was measured by means of stainless-steel electrodes. The structure of the measurement 
cell ensured parallelism between the working surfaces of the electrodes and an invariant spacing between them during the 
experiment. The working surfaces of the electrodes were polished to a high degree of purity, minimizing adhesion of the 
material to the electrode. 

The velocity of ultrasound in the hardened epoxy composite was measured by the buffer-rod method [4] with the 
.application of continuous ultrasonic waves. 

The measurement cells for determining the conductivity and velocity of ultrasound were placed in an air thermostat. 
A Chromel-Copel thermocouple and a PP-63 potentiometer were used to monitor the temperature of the material during 
the experiment. The resistance of the material was recorded with a Straton Teralin III instrument with a measurement 
range of 103--1016 g2. 
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